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• Generator Protection 
• Generator basics 
• Types of generator grounding 
• Stator differential 
• Ground faults 
• Ground directional 
• Negative sequence unbalance 
• Low forward power and reverse power 
• Accidental energization 
• Loss of excitation 
• Volts/Hz 
• Under and overfrequency   

• Fundamentals of Industrial Communications 
• Distance protection theory 
• Step distance and pilot aided schemes 
• Line current differential protection  

Course Agenda 
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•Arc Flash Protection 
• Introduction 
• Relay based techniques 
• Light based technique 
 

 

Course Agenda 



5 

Generator Protection 
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Single Phase AC Generator: 

• Exciter – electromagnet rotating about its axis 

• Stator – 2 electromagnets or poles wired in  
  series to a load 
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Single Phase AC Generator Theory of Operation: 
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Three-Phase AC Generator Theory of Operation: 
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Three-Phase AC Generator Theory of Operation: 
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Review of Grounding Techniques 

Grounding Provides: 
• Improved safety by allowing detection of 

faulted equipment 
• Stop transient overvoltages 

• Notorious in ungrounded systems 
• Ability to detect a ground fault before a 

multiphase to ground fault evolves 
• If impedance is introduced, limit ground fault 

current and associated damage faults  
• Provide ground source for other system 

protection (other zones supplied from 
generator) 
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Types of Generator Grounding 

Low Impedance 
• Provides a ground source for the 

system 
• Can get expensive as resistor 

rating goes up 
• Generator will be damaged on 

internal ground fault 
• Ground fault current typically 

200-400 A 

G

R

System
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Types of Generator Grounding 
High Impedance 
• System ground source obtained from 

generator step-up transformer 
• Uses principle of reflected impedance 

• Eq:  RR = RP * [Vsec/Vpri]2 

• Where RR = Resistance Reflected  
and RP = Resistance Primary 

• Generator damage minimized or 
prevented from ground fault 

• Ground fault current typically <=10A 

G

System

R

RP

RR
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Burning Stator Iron 

• Following pictures show stator damage 
after an internal ground fault 

• This generator was high impedance 
grounded, with the fault current less than 
10A 

• Some iron burning occurred, but the 
damage was repairable 

• With low impedance grounded machines 
the damage is more severe 
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Bus Connected 

G

R

System

G

R

•No transformer between 
generator and power 
system bus 
•Typically low impedance 
grounded for selectivity on 
internal ground faults 
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Connections:  Sharing Transformer 

GSU

System

G

R

G

R

Y

•Transformer between 
paralleled generators and 
system 
•Typically low impedance 
grounded for selectivity 
on internal ground faults 
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Connections:  Unit Connected 

•Transformer between 
generators and system 
•Typically high impedance 
grounded for damage 
minimization 
•Delta GSU (generator step-
up) and UAT (unit auxiliary 
transformer) windings are 
used on the generator output 
to isolate from system ground 
 

G

System

R

Aux Load

GSU

UAT

Y

Y
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Clemson Power Systems Conference 
21 

Normal Generator Operation & 
Power System Interaction 
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Normal Operation 
Generator connected to system with multiple lines 
System consists of load and other generation 
System voltage varies with loading 
> Excitation control will adjust to system voltage/VAr requirements 

within machine capability 

Output will normally be near full rating for best efficiency 
> Prime mover control will adjust to system frequency requirements 

within machine capability 
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Machine Limits 

Rotor Limited (Heat)
Limited by OEL

Stator Limited (Heat)
Limited by SCL

Stator End Core Limited (Heat)
Limited by MEL

Overexcited

Underexcited

Real Power

R
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ct
iv
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Po

w
er

Increasing pressure 
(cooling)
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Excitation Control 

Control for off-line operation (synchronizing) and on-line 
(grid interconnected) 
Over- and under-excitation limiters control when power 
system is in abnormal state 

ExciterRegulator

Limiters

Power
System

Stabilizer

Synchronous
Generator
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Turbine Control 
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 Generator Protection 
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Overview 

Internal and External Short Circuits 

 

G

Exciter

Short 
Circtuits

Abnormal 
Operating 
Conditions

System
Faults
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Electrical Failures 
Stator ground faults: 59G, 51G, 87G  
Stator phase faults: 87 
Interturn faults: 50SP 
Rotor ground faults: 64F 
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Abnormal Conditions 
Loss of Excitation: 40 
Loss of Prime Mover: 32 
Overexcitation: 24 
Overvoltage: 59 
Off-nominal Frequency: 81 
Accidental Energization: 50-27 
Out-of-Step: 78 
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System Backup 
Generator Unbalance: 46 
System Phase Faults: 21P, 51V 
System Ground Faults: 51TG 
Generator Breaker Failure: 50BF 
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ANSI/IEEE Standards 
Std. 242:  Buff Book 
C37.102: IEEE Guide for Generator 

Protection 
C37.101:  IEEE Guide for AC 

Generator Ground Protection 
C37.106:  IEEE Guide for Abnormal 

Frequency Protection for Power 
Generating Plants 

C37.110: IEEE Guide for the 
application of current transformers 
used for protective relaying purposes  
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 IEEE Buff Book 

Small –  up to 1 MW to 600V, 500 kVA if >600V 
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 IEEE Buff Book 

Medium – up to 12.5 MW 
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 IEEE Buff Book 

Large – up to 50 MW 
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IEEE C37.102 
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Electrical Failures 
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Stator Ground Fault: High-Z, Unit 
Connected Machines 

59N 
> 95% coverage of winding from terminal end 
> Tuned to the fundamental frequency 

27TN 
> 5-15% coverage from the neutral end 
> Responds to the Neutral 3rd Harmonic 

59D 
> 5-15% coverage from the neutral end 
> Responds to the ratio of the Neutral and Terminal  3rd 

Harmonic 
Combine 59N and 27TN or 59D for 100% coverage 
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59N Element 

> Neutral grounding transformer (NGT) ratio selected that 
provides 120 to 240V for ground fault at machine terminals 

– Max L-G volts =13.8kV / 1.73 = 7995V 
– Max NGT volts sec. = 7995V / 120V = 66.39 VTR 

Fault Position
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59N Element 

Use of Multiple Setpoints 
> 1st level set sensitive to cover 95% of stator winding 

– Delayed to coordinate with close-in system ground faults capacitively coupled across 
GSU 

> 2nd level set higher than the capacitively coupled voltage so coordination from 
system ground faults is not necessary 

– May cover from 85% of the stator winding 
– Need to calculate influence of system fault with GSU capacitive coupling and pickup 

above the coupled value 
– Allows higher speed tripping 
– Only need to coordinate with VT fuses 

Volts
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3rd Harmonic in Generators 

3rd harmonic present in 
terminal and neutral ends 
Varies with loading 
Useful for ground fault 
detection near neutral 
> If 3rd harmonic goes away, 

conclude a ground fault near 
neutral 



41 

27TN: 3rd Harmonic Neutral 
Undervoltage 

59
N

0-15% Coverage

27
TN

Primary 3rd harmonic voltage may 
be small, ex., 0.5-8 volts 

Element must be sensitive 
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3rd Harmonic Field Measurements 
Neutral Voltage Field Measurements
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27TN: 3rd Harmonic Neutral 
Undervoltage 

Use supervisions for increased security under various 
loading conditions 

> Any or All May be Applied Simultaneously 
– Positive Sequence Undervoltage Block 
– Definable Power Band Block 
– Under VAr Block; Lead & Lag 
– Power Factor Block; Lead & Lag 
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27TN Supervision 

Phase voltage 
> No phase voltage, machine dead 
> Cannot generate 3rd harmonic voltage 

Power 
> 3rd harmonic typically increases as power output increases 

VAr, PF, I, Power Band 
> Additional supervisions for cases where 3rd harmonic levels vary 

with modes of operation (sync condenser, pumping, VAr sink) 
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59D: 3rd Harmonic Ratio Voltage 


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Typical 3rd Harmonic Values 

3rd harmonic values tend to increase with power and VAr loading 
Fault at neutral causes 3rd harmonic voltage at neutral to go to zero 
volts 

Real 
Power 

Reactive 
Power 

Neutral 
Voltage 

Terminal 
Voltage 

Ratio 

0 0 4.2 4.05 1.0 

2 0 3.75 4.95 1.0 

12 1 4.05 5.7 1.3 

32 1 6.3 7.95 1.4 

56 7 8.25 9 1.3 

100 7 12 12.3 1.1 
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59D – 3rd Harmonic Ratio Voltage 
Examines 3rd harmonic at terminal and neutral 

ends of generator 
> 59D trips when: 

–  [VN3rd / VN3rd + V303rd] > pick up 
Uses undervoltage supervision 

– VN3rd + V303rd > pick up 
Provides 0-20 stator winding coverage and 80-

100% (typ.) 
Does not have a security issue with loading, as 

can a 27TN 
> May be less reliable than 27TN  

– Not enough difference to trip 
“Null spot” at mid-winding protected by 59N 
Needs wye phase VTs; cannot use delta VTs to 

obtain 3V0 voltage at terminals 
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Stator Ground Faults:  High-Z Element Coverage 

0
%

10
0%

50
%

59N-1 59N-1

59D

27TN

100% Stator Ground 
Fault coverage 
afforded by overlap 
by 59N and either the 
27TN or 59D 
elements 
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Grounding Fault Calculations 

Size the NGT to obtain 120 to 240V for a 
full winding ground fault 

Size the NGR to limit ground fault currents 
Calculate 5%-100% ground fault setting 
Calculate optional high speed 15%+ 

ground fault setting 
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Ground Fault Calculation 

G

System

R

Aux Load

GSU

UAT

Y

Y

Vnom = 13.8kV

0.01uf to
GND

0.12uf to
GND

0.24uf to
GND

1.27uf to
GND

1.71 ohm
33:1

13.8:230 kV

0.006uf
Interwind
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Ground Fault Calculations 
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Ground Fault Calculations 
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Ground Fault Calculations 
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Ground Fault Calculations 
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Stator Ground Fault: Low Z Machines 

51N: Neutral Overcurrent 
67N: Neutral Directional 
87GD: Ground Differential 

G

R

51
N

67
N

3Y

87
GD
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51N 

Typically set to 5% of available fault 
ground fault current 

Coordination with system ground fault 
protection 

Blocking by system ground fault 
protection 

 
 

G

R

51
N 1

System
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67N: Neutral Directional  
System

G G

RR

51
N

67
N

51
N

67
N

3Y 3Y

Provides selective ground fault detection for multi-generator bus 
connected arrangements 

Set to operate faster than 51N 

-may have short time delay 
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67 N: Neutral Directional 
67N directionalized to trip for zero-sequence 

(ground) current flowing toward a generator 
> Complements 51N 
> Open circuit neutral resistor or open grounding 

switch 
> Ground switch supervision (becomes non 

directional) 
67N is set faster than 51N 
> May be short definite time delay 

Requires 3V0 polarizing signal 

Core balance CT recommended for sensitive fault 
detection 
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•Ground fault on system is detected by grounded generator’s 51N element 

•Coordinated with system relays, they should trip before 51N 

•67N sees fault current in the reverse direction and does not trip 

System

G G

R R

51
N

67
N

51
N

67
N

Neutral Directional : Low-Z Generator 
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•Ground fault in machine 
is detected by 67N & 51N  

•51N picks up in 
unfaulted machine 

•67N trips fast in faulted 
machine 

•51N resets on unfaulted 
machine  

System

G

R

51
N

67
N

G

R

51
N

67
N

Neutral Directional : Low-Z Generator  
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87GD: Ground Differential 

G

R

51
N

G

R

51
N

87
GD

87
GD

3Y 3Y

1 1

Employed 87GD to selectively 
clear machine ground fault for 
multi-generator bus connected 
arrangements 

Use with 51N on grounded 
machine(s) for internal fault and 
system back up 

Ground switches on all machines 
can all be closed 
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87GD: Ground Differential 
87GD element provides selectivity on 

multiple bused machine applications 
Requires phase CTs, or terminal side 

zero-sequence CT, and a ground CT 
87GD uses currents with 

directionalization for security and 
selectivity 

87GD is set faster than 51N 
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Ground Differential 

G

R

51
N

G

R

51
N

87
GD

87
GD

3Y 3Y

1 1

System •Ground fault in 
machine is detected 

by 87GD & 51N  

•51N picks up in 
unfaulted machine 

•87GD trips fast in 
faulted machine 

•51N resets on 
unfaulted machine  
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Stator Ground Faults: Coverage 
51N

single generator, with system supplying ground 
current, or multiple generators as ground current 
sources

67N

single generator, with system supplying ground 
current, or multiple generators as ground current 
sources

0%

100
%

50%

87GD

•In Low-Z schemes, you cannot provide 100% stator ground fault protection 

•Protection down to last 5% near neutral using 51N, 67N or 87GD 



65 

65 
 
 

Elements responding to zero sequence quantities will not 
operate 

Fault current not limited by grounding impedance 
Overcurrent protection would require coordination 

Stator Phase Faults 
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Sensitive detection of phase and ground faults 
No coordination issues 
Difficult to install on large machines 

Balanced Differential 

50 50 50
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No need to coordinate with other zones 
High speed (typ. 0.75-2.5 cycles) 
Main issue is security during CT saturation 

G

87T-UAT 87T-SST

87G

87U

M M

87T-GSU

Differential 
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Biased Differential:  87G 
Fast, selective 
Used to clear multiphase faults 
>Can detect ground faults to a degree in 

low-Z grounded machines 
>Cannot detect ground faults in high-Z 

grounded machines 
–Too little ground fault current at <= 10A 

Uses differential principle 
>Current in should equal current out 
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Minimum Pickup: 5% of Inominal  
Slope 1 for “normal” CT errors:  10% 
Slope 2 for large errors: 50-80% 

 Biased Differential Characteristic 
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Through Current: Ideal CTs 
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Through Current: CT Error 
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Internal Fault: Ideal CTs 
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Internal Fault: CT Error 
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CT Calculations for Differential 

Intent is to size CTs for fault current and 
burden to avoid saturation 

Modern protection has very low burden which 
is helpful (0.020 ohm typ.) 

Old E/M protection may have high burden (0.3-
0.8 ohm typ.) 

Long runs of thin wire raise burden 
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C37.110 Recommendations 
The following requirements apply to CTs used for 

generator differential applications: 
a) Select CT current rating to 120%-150% of generator rating 
b) Utilize full-winding ratio 
c) Use CTs with the highest practical secondary voltage capability 
d) Use CTs that have fully distributed secondary windings 

The differential CTs on both sides of a generator should 
be of the same ratio, rating, connected burden, and 
preferably have the same manufacturer, so that the 
excitation characteristics are well matched 
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C37.110 Recommendations 
If the generator differential zone must include a generator 

breaker it is not always possible to use CTs with the 
same excitation characteristics, especially knee point 
voltage. The mismatch of the CTs should be checked 

In order of preference, the goal is to: 
a) Avoid CT saturation for asymmetrical currents, if possible  
b) Prevent saturation on symmetrical currents 
c) Go into saturation at the same current if avoiding dc saturation is not 

possible  
d) Minimize the difference in time to saturation for asymmetrical 

currents (dc saturation) 
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CT Saturation for DC 

Ts
t

eI
−

⋅

XRI
P

I
S

Current 

Flux 



78 

RSIP IS

IE

ZE ZB

Ideal
CT

VE

( )BSSE ZRIV +⋅= Voltage across the magnetizing branch 
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8000:5A
C400

212 MVA, 18 kV

8000:5A
C400

Gather Burden Information 
CT = 0.3 Ω 
Leads = 0.6 Ω 
Relay = 0.040 Ω 
Ztotal = CT + Leads + Relays 
          = 0.3Ω + 0.6Ω + 0.04Ω = 
0.94 Ω 

Determine Rated Current 
Irated = MVANOM/√3⋅VNOM 
            = 212MVA/√3⋅18 kV 
            = 6808 APRI 

 
Use X”d for maximum Fault Current 
X”d=0.136 pu 
If=1/ X”d =7.35 pu 

IfPRI=7.35 * 6808 
       =50309 APRI 
 

IfSEC=50309 *5/ 8000 

        =31 ASEC 

CT Calculations for AC Saturation 
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C400 OK 

CT Calculations for AC Saturation 
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Set Breakpoint @ 
35KA 

CT Calculations for AC Saturation 
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Abnormal Operation 
Protection 
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Abnormal Operation 

G 52

32 4050-
2778 24 81
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Loss of Excitation: 40 
• After field loss, generator acts like an induction 

machine 
• Takes reactive (VAr) support from the system 

– Bad for machine as rotor surface heats due to slip 
induced currents 

– Bad for the system, as stability is compromised, plus 
it can take down local area voltage 

• Damage can take place quickly or over time 
based on severity of field loss 
– Complete: fast, seconds 
– Incomplete (low field): longer, 10 sec to minutes 

> Block function for VT Fuse Failure 
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Loss of Excitation: 40 
X

R

Heavy Load
Light Load
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Loss of Excitation: Method 1 
40

8000:5A

18.9 kV:120 V

212 MVA, 18 kV
X’d=0.216 pu

Xd=1.967

Offset: ½ Xd’

Diameter: Xd

Diameter: 
Zbase

R

X

5.157
120

18900
==VT

1600
5

8000
==CT

( )
Ω=⋅=⋅= 54.15

5.157
1600

211
18(sec)

22

MVA
kV

VTR
CTR

MVAbase
kVbase

Zbase

Ω=⋅=⋅′=′ 36.354.15216.0(sec)(sec) ZbaseXX dd

Ω=⋅=⋅= 57.3054.15967.1(sec)(sec) ZbaseXX dd
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88 

> Prevent turbine blade heating and/or damage to mechanical 
parts from “motoring” ( in case the Generator is connected 
on line, before being ready) 

> “Motoring” can happen where the Prime Mover (source of 
mechanical energy) of the generator fails 

Reverse Power (32) 

fails 489/G30/G60 

Trips to 
prevent 

damage to 
mechanical 

parts 
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> The reverse power element should be set at ½ the rated 
motoring power 

> Pickup is calculated as follows: 
 
 
 

> To prevent mis-operation for power swings, use typical 
delay of 20 to 30 seconds 

> For sequential tripping applications, time delay will be 2 to 3 
seconds 

> Block function when the generator is offline 

Reverse Power (32) 
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40

8000:5A

18.9 kV:120 V

212 MVA, 18 kV
X’d=0.216 pu

Xd=1.967

32 

Reverse Power (32) 
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> Protect directly and indirectly connected generators from 
excessive voltage and/or low frequency 

Voltz Per Hertz (24) 
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> Coordinate with manufacturers excitation capability curves.  
The combined generator/GSU limit curve is shown below: 

Voltz Per Hertz (24) 
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> The measurement of V/Hz will be accurate through a 
frequency range of 5 to 90 Hz 

> Program volts per hertz element 1 with an inverse 
characteristic  (for example: curve A, 1.05 pu pickup, 
TDM=40) 

> Program volts per hertz element 2 with a definite time 
characteristic (for example:  1.23pu pickup, 2 second time 
delay) 

> Both elements 24-1 and 24-2 issue a trip 
> Volts per hertz 1 pickup used to generate an alarm 

Voltz Per Hertz (24) 
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Generator Protection – Inadvertent Energization: 

• Protect stator windings and rotor from very high induced currents ( in 
case the Gen. Is connected on line, before being ready- V and  f ) 
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Generator Protection – Inadvertent Energization: 
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1.   Loss of generation 
with load remaining 
constant 

2.   Load increases 
substantially on a weak 
system 

Power Swing, which causes 
a lost of synchronism 
between neighboring 
systems for a short time, can 
occur in the following 
conditions: 

Power Swing Block/Trip (78) 
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Out-of-Step Relaying 
Out-of-step blocking relays 

– Operate in conjunction with mho tripping relays 
to prevent a terminal from tripping during severe 
system swings & out-of-step conditions. 

– Prevent system from separating in an 
indiscriminate manner. 

Out-of-step tripping relays 
– Operate independently of other devices to 

detect out-of-step condition during the first pole 
slip. 

– Initiate tripping of breakers that separate system 
in order to balance load with available 
generation on any isolated part of the system. 
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Out-of-Step Tripping 
The locus must stay for some 
time between the outer and 
middle characteristics 

Must move and stay between the 
middle and inner characteristics 

When the inner characteristic is 
entered the element is ready to 
trip 
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Power Swing Blocking 
Applications: 
• Establish a blocking signal for stable power swings (Power 

Swing Blocking) 
• Establish a tripping signal for unstable power swings (Out-of-

Step Tripping)  

Responds to: 
• Positive-sequence voltage and current 
Block when: 
• Generator off-line or VTFF 
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Voltage = High 

Current = Low 

Voltage = Low 

Current = High 

Voltage = High 

Current = Low 

Z =     
V     

I   

XL 

R 

Power Swing Block/Trip (78) 
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R 

Timer 
Starts 

Power Swing Block/Trip (78) – No 
Fault 
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R 

Timer 
Starts 

Power Swing Block/Trip - Internal Fault 
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Under-frequency 
Condition 

Underfrequency (81U) 
• Under-frequency occurs when power system load exceeds 

prime mover capabilities of generator 
• Protect turbine from under-speed 
• Pickup and delay settings are dependent on operating 

practices and system characteristics 
• Block underfrequency when offline 
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Over-frequency Condition 

Overfrequency (81O) 
• Over-frequency occurs when mechanical input to prime 

mover exceeds electrical load ( loss of load due to 
transmission / feeders disconnection ) 

• Protect turbine from over-speed or damage due to over-
speeding 

• Pickup and delay settings are dependent on operating 
practices and system characteristics 

• Block overfrequency when offline 
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Phase Undervoltage (27) 
Phase Overvoltage (59) 
• Configured to alarm 
• Set undervoltage to 90% with time delay 
• Block undervoltage when generator breaker open or VTFF 
• Set overvoltage to 110% with time delay 
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Generator Protection – Negative Sequence: 

• Protect rotor from heating due to negative sequence currents 
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Generator Protection – Negative Sequence: 

• The K curve that is 
selected must match the 
generator curve (From 
the family of biased 
curves and K. 

• K is proportional to the 
Gen. TC Thermo-
Capacity) 
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Tripping Philosophy  
& Sequential Tripping 

• Machines may be shutdown for faults, 
abnormal operating conditions or for a 

scheduled off-line period 
• Shutdowns may be whole or partial 

• Shutdowns may lock out (LOR) or be self 
resetting (94) 
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Tripping Philosophy  
& Sequential Tripping 

– Unit separation 

• Used when machine is to be isolated from system, but 
machine is left operating so it can be synced back to the 

system after separating event is cleared 
• Only generator breaker(s) are tripped 

– Generator Trip 

• Used when machine is isolated and overexcitation trip 
occurs 

• Exciter breaker is tripped (LOR) with generator breakers 
already opened 
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Tripping Philosophy  
& Sequential Tripping 

– Simultaneous Trip (Complete Shutdown) 

• Used when internal (in-zone) protection asserts 
• Generator and exciter breakers are tripped (LOR) 

• Prime mover shutdown initiated (LOR) 
• Auxiliary transfer (if used) is initiated 

– Sequential Trip 

• Used for taking machine off-line (unfaulted) 
– Generator and exciter breakers are tripped (94) 

– Prime mover shutdown initiated (94) 
– Auxiliary transfer (if used) is initiated 
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Trip Outputs Example  
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Arc Flash Solutions 
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A Study of a Fault……. 
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Fault Interruption and Arcing 
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 An electric arc flash can occur if a conductive object gets 
too close to a high-amp current source or by equipment 
failure (ex., while opening or closing disconnects, racking 
out) 
– The arc can heat the air to temperatures as high as  

35,000 F, and vaporize metal in equipment   
– The arc flash can cause severe skin burns by direct heat 

exposure and by igniting clothing 
– The heating of the air and vaporization of metal creates a 

pressure wave (arc blast) that can damage hearing and 
cause memory loss (from concussion) and other injuries.   

– Flying metal parts are also a hazard. 
 

Arc Flash Mitigation: 
Problem Description 
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 Arc flash energy may be expressed in I2t terms, so 
you can decrease the I or decrease the t to lessen 
the energy 

 Protective relays can help lessen the t by 
optimizing sensitivity and decreasing clearing time 
 Protective Relay Techniques 

 Other means can lessen the I by limiting fault 
current 
 “Non-Protective Relay Techniques” 

 

Methods to Reduce Arc Flash Hazard 
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• System design 
modifications increase 
power transformer 
impedance 
– Addition of phase 

reactors 
– Faster operating 

breakers 
– Splitting of buses 

• Current limiting fuses 
(provides partial protection 
only for a limited current 
range)  

• Electronic current limiters 
(these devices sense 
overcurrent and interrupt  
very high currents with 
replaceable conductor links 
(explosive charge)  

• Arc-resistant switchgear 
(this really doesn't reduce 
arc flash energy; it deflects 
the energy away from 
personnel)  

• Optical arc flash protection 
via fiber sensors  

• Optical arc flash protection 
via lens sensors  

 

Non-Protective Relaying Methods of 
Reducing Arc Flash Hazard 
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• Bus differential protection 
(this reduces the arc flash 
energy by reducing the 
clearing time  

• Zone interlock schemes 
where bus relay selectively 
is allowed to trip or block 
depending on location of 
faults as identified from 
feeder relays 

• Temporary setting changes 
to reduce clearing time 
during maintenance  
– Sacrifices coordination 

 

• FlexCurve for improved 
coordination opportunities  

• Employ 51VC/VR on 
feeders fed from small 
generation to improve 
sensitivity and coordination 

• Employ UV light detectors 
with current disturbance 
detectors for selective gear 
tripping 

 

Protective Relaying Methods of Reducing 
Arc Flash Hazard 
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Fuses vs. Relayed Breakers 
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Arc Flash Hazards 



121 

Arc Pressure Wave 
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Arc Flash Warning Example 1 
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Arc Flash Warning Example 2 
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Arc Flash Warning Example 3 
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Arc Flash Solutions 
Relaying Techniques to Reduce Arc Flash Energy 

1-2 ms  Install discrete Arc Flash Detection device 
 
1 cycle  Implement low impedance bus protection 

 
1.5 to 2 cycles Implement instantaneous overcurrent tripping using 
   maintenance setting group in relay.  Force feeder breaker 
   protection to mis-coordinate when personnel are within 

flash 
   protection boundary 

 
1.5 to 2 cycles Implement high impedance bus protection 
 
3-4 cycles Implement bus zone interlocking scheme 
 
20.0 cycles Breaker failure protection 
 
Seconds  Reduce coordination intervals of existing  

  time-overcurrent relays 
  Time to clear saves lives 
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50/62 

Ethernet 
Switch 

Digital Communications Digital Communications 

50 50 50 50 50 

Arc Flash Solutions 
Bus Interlock Scheme 

3-4 Cycles Detection 
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87Z 

Pickup 

2000 V 

400 V 

80 V 
0 V 

Arc Flash Solutions 
High Impedance Bus Differential 

1.5 to 2 Cycles Detection 
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Force feeder breaker protection to mis-
coordinate when personnel are within flash 
protection boundary. 
 
Replacement Relays: 2nd 50 element 
Multifunction Relays: setting groups 
Multifunction Relays: multiple 50’s 
 

Arc Flash Solutions 
Enable Maintenance Mode 
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Arc Flash Solutions 
2nd Instantaneous Overcurrent Element 

1.5 to 2 Cycles Detection 
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87 

Arc Flash Solutions 
Low Impedance Bus Differential 

1 Cycle Detection 
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A 

A 

t(A) 

  I pu (A)   I pu (B) 
Use             for coordination I pu (A)  

t(B) 

t 

I 

CI 

A = Downstream feeder relay 
      with the highest settings 

I F B 

B Transformer damage 

Select Relay B 
Instantaneous Pickup 

(if possible) 

80% 

50 
51 

50 
51 

Arc Flash Solutions 
Time Current Coordination 
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T 

T T T 

Distance 

Distance 

Arc Flash Solutions 
Fault Current and Operate Time 
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ARC FLASH DETECTION METHODS 
 

133 
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Traditional Arc Flash Detection 
Methods Light Sensing 

> Why Light Sensors?  
– Accelerate the trip time during arc flash events 

 
> Two types of light sensors:  

– Point sensors – provides a focused view, which minimize susceptibility to 
external light noise, but has limited range 

– Loop sensors – provides ability to collect light and channel it to a sensor 
along the fiber to the end of the fiber, but can be challenging to install and 
troubleshoot 

 
> Cons: 

– High susceptibility to false triggers if light sensing threshold not set high 
enough 

– Fiber loops can be easily damaged due to bending or pinching 
– Difficult to install or re-install if fiber loop is damaged 
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Traditional Arc Flash Detection 
Methods 

Light and Current Sensing 
                                                          

> Pros: 
– Additional Current input minimizes the probability of a false trigger 

 
> Cons: 

– Requires the use of CT’s and overcurrent protection device 
– Comparatively more cost and complexity 
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A Novel Approach : Light And 
Sound Sensing based 

Detection 
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A Unique Light and Sound 
Signature Light & Pressure Wave Detection 
 

• In an arc flash condition, every millisecond counts… 
 
• Known and standard time relationship from the difference between a light signal 

(3x108m/s) and an associated pressurized sound wave (343 m/s)  generated unique 
time delay signature 

Figure 1: light and pressure wave signal during the Arc Flash event 
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Light & Sound Sensor – US Patent 
• US Patent 8040517- novel sensor technology to detect both arc flash induced light and 

sound 
 
 
 
 
 

 
 

• Jacket of the light fiber inside the sensor head is removed which provides better sensitivity 
to the light from all angles through transparent head cover. Mirror reflects the light for 
testing. 

• The Light Fiber picks up the flash of light from the Bare Fiber in the sensor head and 
transmits that to the unit 

• The Sound/Pressure Fiber emits light which gets reflected back by the diaphragm, then 
collected by the same sound/pressure fiber and sent back to the unit  

• During an arc flash event, the diaphragm vibrates from the pressurized sound wave 
creating a signature which is detected by the sensor head 
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Continuous System Self-testing 
To ensure high reliability of the system all sensor heads and fiber are continuously 

tested.  
 
For the “light path fiber every second short duration light pulse is sent from the 

laser diode: once reflected in the small mirror installed in the head and received 
by the photo detector, path is considered healthy. 

 
For the “sound” path the light is sent continuously from the laser diode to be 

reflected by the shiny membrane and received by the photo detector which 
confirms health of the sensor path.  

 

AF 
unit 

sensor 
head 
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Sensor Placement 
The above is a representation of a 
Two-High design with Arc-Flash 
Sensors: 

> 1 – Breaker 1 Compartment 
> 2 – Breaker 2 Compartment 
> 3 – Main Bus Bar Section 
> 4 – Upper Cable Exit Section 
> 5 – Lower Cable Exit Section 

2 

1 
6 

3 

5 

4 

6 

1 

2 

4 

5 

3 
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